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I f  a quantum vector varies in the Hilbert space, as trial functions do in the 
variational method, a vector field gets defined whose critical points are the 
eigenvectors of  the Hamiltonian. The numbers of each type of critical point 
(minima, maxima, saddle points of  various "indices") are related to the 
topology of the compact  variety, the closed multidimensional surface on which 
the trial vectors wander when they are restricted to unit normalization. The 
"global"  results from that approach are compared with those of  the "local"  
theory in which the type of each critical point is obtained from the Hessian 
on the Hilbert space whose eigenvalues are derived in terms of those of  the 
Hamiltonian involved in the vector field. In a configuration-interaction (CI) 
problem for example,  the type of saddle point each "excited state" represents 
is determined. 
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I. Introduction 

The variational method allows the ground state of  a Hamiltonian H to be 
calculated by the minimization of the functional 

E[~] <_ <~lnl ~>/<~I~>. (1) 

For excited states however, the varied state needs to be kept orthogonal to all 
the lower eigenvectors. This is automatic if there are no lower states of  the same 
symmetry. Otherwise there is a serious difficulty. As the lower states are not 
exactly known, during variations one may slip towards some lower state. Practical 
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methods for dealing with these problems were given in the "Variation- 
Perturbation Method for Excited States" by this writer [1], and in the difficult 
cases of some of the excited states of atoms treated by the "Non-Closed Shell 
Many-Electron Theory" [2], by Luken and Sinano~lu [3] and by Luken [4]. Earlier 
methods dealing with the variational approach, e.g. those of Eckart [5] and the 
theorem of  MacDonald [6] had been elegantly reviewed by L6wdin [7]. We shall 
not need to go into any of the methods mentioned above in any detail. Suffice 
it to say that it is crucial to know readily and before any extensive computation, 
the nature and type of  extremum a given higher eigenvalue represents. Most of 
the eigenvalues turn out to be saddle points, only the highest one a maximum 
(in the case of a finite dimensional subspace of the Hilbert space) as seen below. 

For each eigenvalue we determine the directions in the Hilbert space in which 
the energy goes up and those in which it goes down, and thereby also the " index" 
of each saddle point. In the last section, the topology of the ( n -  l)-dim, variety 
or closed surface in the n-dim, subspace C, of the Hilbert space 5f2, over which 
the variations occur is related to finding the numbers of each kind of critical 
point (minima, maxima, saddle points of various indices, . . . ) .  

2. Unnormal ized variations of  vectors over Cn and the Hamii tonian as a Hessian 

Let {[e,}} be an orthogonal (O.N.) basis for C. c ~2- Then with any 

l u) = ~ c,] ei) (2) 
i 

-= <uIHlu> = Z (3) 
i,j 

The critical points of the scalar field e[u] on (7, occur at 

c)8 
- -  = 2Hqcj = 0 for all i (4) 
c] Ci 

(taking c to be real). 

Thus {H[u)} may be viewed as a vector field defined on (2,. 

H[u)=O has only the trivial solution [u)=O, i.e. {c~=O for l < - i < - n }  unless 
det H - - 0 .  In the latter case there are a number of  zero eigenvalues and 
H[uk(O)) = O. 

The Hessian W becomes just the Hamiltonian itself: 

c)2e 

~ == Oci Ocj = 2H~ (5) 

The numbers of negative, zero and positive eigenvectors {~7-, ~7o, r/+} of the 
Hessian determine the nature of the critical point, the solution(s) of  Eq. (4). But 
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these are precisely the e igenvalue types o f  the Hami l ton ian  {n_, no, n+}. Thus we 
have 

Theorem 1. For the arbitrary (unnormalized) variations of  a vector [u) in C, c ~2 
the Hamiltonian H is (�89 the Hessian o f  the functional (uIH]u)=-e[u] (where 
(ulu) in general ~ 1). The critical point(s) o f  e[u] occur at the Ak = 0 eigenvectors 
of H, i.e. Hluk)=0. 
Proof Eqs. (2)-(5). 

Corol lary  1-1. I f  ]H l r 0 so that rank H = n, the only critical point in Cn is at the 
origin, {c~ =0) .  This is then a saddle point o f  index 71_ = n_. In the n_ directions in 
C,, along the eigenvectors of  H with negative eigenvalues, e[u] comes down. 

Along the other directions pointed by the positive eigenvalue vectors (n+ = n - n_ of  
them), e[u] goes up. 

Proof 7/o = no = 0; and + and - eigenvectors of  ~ and H are the same. Index  
of  the saddle  point  = r/_ = n_. (Fo r ]HI  ~ 0 the only solut ion of  H] Uk) = 0 is [Uk) = 0, 
i.e. the origin (c~ = 0}. 

Corol lary  1-2. I f  ]H] = 0, rank H < n. There are one or more, say no non-trivial 
�9 ~k = 0 eigenvectors. But then the Hessian too will have To = no zero eigenvalues. 
Such critical points are said to be "degenerate". As there are a continuous family 
of  them for a family of  ]uk) differing in normalization constants (in the complex 
case, also in phases these making up a "ray"),  the critical points are also "non- 
isolated". In the other n_ and n+ eigenvector directions e[u] still goes down and 
up respectively. 

Remark. Since the vectors ]u) are not  normal ized  in e[u],  only the directions 
along eigenvectors  ]ui) are defined in C~. A direct ion {ylui); O< y < ~ }  passes 
th rough  the e igenvector  point ]ui) which is for  the 7 value such that  (ui lui)= 1. 

Remark. e[u] = eicjH ~j for  c real (tensorial  summat ion  convent ion)  is an ( n -  1) 
dim. conic  surface for  each specified value of  e > O. The type of  conic  is de termined 
by the e igenvalue type numbers  {n_, no, n+}; e.g. if  n_ = O, no = O, n+ = n we have 
an (n - 1)-dim ellipsoid. A concentr ic  family of  these surfaces are genera ted  as 
e takes on different values. For  0<_ e < em~ we have the inside of  the solid 
el l ipsoidal  shape.  Other  conics result for  n_, no ~ O. The  "e igenvec tor  rays"  {7] u~)} 
cor respond  to pr incipal  axes of  the (n - 1) conic solid object.  

3. Variations of vectors constrained to unit normalizations 

Let now all lu) in the var ia t ion me thod  and in e[u]=(uIHlu  ) to be constra ined 
SO a s  

n 
d [ u ]  ~ ( u t u )  = Z 2 c, = 1. (6) 

i~l 

Then also we have E[u] = e[u]  where E[u] =-(u[H[u)/(u[u) for  arbi t rary  [u)~ C, 
and E[u] no longer a m i n i m u m  in general.  
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Eq. (6) shows that lu), i.e. the coefficients c={ci} on the O.N. basis {]ei)} are 
varied subject to Eq. (6), the tips of the u-vectors in C, stay on the unit-sphere, 
a surface of dim. ( n - 1 ) .  Unlike the unnormalized or "ray"-variations of the 
previous section, the vectors now go over a compact closed surface, a compact 
variety. 

The critical points of the field e[u] and the Hessian that gives their nature are 
now different than in the previous section, still related to the Hamiltonian but 
not the same. 

Varying e[u] with respect to lu), i.e. the {ci} subject to Eq. (6), we get in the usual 
way 

_ : o  

o r  

Oe Od 
- - - A - - = 0  
Oc~ Oc~ 

for all iE {1 ,2 , . . .  n}. 

From Eqs. (3) and (6), this becomes 

( H  o - A6o)cj = 0 for all i. 
j-->l 

The critical points of e[u] = E[u] on the (n - 1) unit-sphere now occur where the 
vector field v(cl, c2, . . ,  c, ; A), or 

v(c; x) =- (H- ,~ i )c  (8) 

is zero on the unit sphere. This happens of course at the eigenvectors (normalized 
to unity) lu (k~) of H and A = A ~k~ eigenvalue. It appears therefore there are n 
critical points on the (n - 1)-sphere (see however the last section). 

The type of each critical point is given by the Hessian YCx of the scalar field 
e[u] = E[u] s.t. d[u] = 1 as in Eq. (9) from Eq. (8). 

0V 
- -  = H - h i  = YC~. (9 )  
0e 

[This could have been obtained also as 

ze - 02d = 2(H U-Ix6ij)]. 
Oci Ocj tx Oci Ocj 

The nature of the critical point ]u (k~) at h = h (k~ is given by the numbers of 
{+, 0, _}{p~k~} eigenvalues {r/+, r/0, r/ }a(k) of the Hessian evaluated at a given 
eigenvector of H, i.e. for a given h = h (g), i.e. g~(k~, 

(yc;~, - p~*>I)l w~>) = o. (1 o) 
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From Eq. (9), this is 

,~x(k)- p~k) I = H - ( A (k) + p~k))I 

so that  we have h ( l ) :  h(k) q-p~ k). 

Thus 

(11) 

p~k) = h(t)_ h(kk (12) 

Theorem 2. The critical points of the energy functional E[u] on the ( n -  1)-unit 
sphere (so as to maintain (ulu)= 1) occur at the eigenvectors {[u(k))} of the Hamil- 
tonian H. The Hessian at the ( k ) th critical point has n eigenvalues p ~ k ) ; l ~ { 1, 2 , . . .  n } 
given by Eq. (12), i.e. the eigenvalues of H less the (kfh fixed one of the critical point. 

Proof. Given  just above.  

Corol lary  2-1. Suppose all the invariant manifolds under H are one-dimensional 
(i.e. there are no degenerate eigenvalues of H). Then the first eigenvalue is a minimum 
(of E[u] ) ,  the second is a saddle point of index 1, i.e. ( r / - =  1 and ~ + =  n - 2 ) ,  
third is a saddle point o f t  1- = 2, and so on with the last eigenvalue h t~) a maximum. 
For the k th eigenvalue of H, 

~7 +(h (k)) = n - k (13a) 

and 

r / - (h  (k)) = k -  1. (13b) 

P r o o f  p~k) = (/~1 -- I~(k)) > 0 for  1> k. 

Note  that  for  1 -- k, one has p~k) = 0 SO it would  appea r  that  ~7o(h (k)) = 1 for  each 
fixed (k). Howeve r  this s imply states that  variat ions in the radial  direction on 
the unit  sphere  are not permit ted,  one being const ra ined to the surface of  the 
sphere.  Other  directions which are along other  [u(k))'S are tangent  to the sphere.  
Their  numbers  add  up to Eqs. (13). 

Corol lary  2-2. From Theorems 1 and 2 it is seen that the vector d i rec t ions  {'flu(k))} 
from the saddle point at the origin c = 0 in the unconstrained "ray-variations" of 
[u] pierce the unit-sphere at the critical points {[u(k)) : (u(k)[u (k)) = l} orE[u] on the 
sphere. 

Proof. The gradient  lines ae/ac for  the rays ~ c ~  1 start  at the origin c - - 0  as 
0e 

(~ )o - -0 ,  then go up or down according  to the e igenvector  directions of  
(O2e/Oc Oc') = 2Hg. The critical points  o f  e[u] with d = 1 are the tips of  the [u (k)) 
vectors on the uni t-sphere.  

Corol lary 2-3. Suppose h (k) is degenerate, so that /~(k-l)= ,~(k)= •(k+l) . . . .  Then 
the A (k) is a degenerate (in the vector fields sense) critical point ,  also non-isola ted 
(as are ( k - 1 )  and (k + 1)]. The ~ ( ~  has "non-radial" pt = 0 eigenvectors. Vari- 
ations of [u) along [u(k-1)), lU (k~) and lu (k+l~) keep e[u] constant. These directions 
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constitute a plane, a linear manifold, on the e[u] surface at c o n s t a n t  A (k). The e[u] 
still goes up or down along the other dimensions l # { k - l, k, k + 1}. 

Proof From Eq. (12). 

4. Topological invariants of the (n - 1) unit sphere in the Hilbert space and their 
relation to the numbers and indices of the critical points on the energy surface 

There are relations between the numbers of  critical points of  each type on E[u] 
if [u] variations are confined to the surface of a compact  variety (and if E[u] is 
twice differentiable), and the topological invariants of  the variety. Such a global 
variational theory was developed by the mathematician Marston Morse [8]. Initial 
notions along such lines had been introduced by Poincar& The theory is outlined 
by Milnor [9]. 

We now explore here how much information can be obtained from the Morse 
inequalities for the quantum mechanical E[u] minmax problem. To our knowl- 
edge this is the first introduction in quantum chemistry of  "Morse  Theory".  

Restricting the [c] to the real scalar field so that Cn ~ Vn real vector space of 
dim = n, on the (n - 1) unit sphere, the Morse conditions are satisfied. The [u] is 
on a compact  variety, the unit sphere, and E[c] is twice differentiable in c. 

The theory becomes far too complicated if some of the critical points are 
"degenerate",  i.e. the Hessian has some zero eigenvalues which as we saw above 
results from some eigenvalues of  the Hamiltonian being degenerate (A sense), 
and /o r  if some critical points are non-isolated which also will result when the 
Hessian has zero eigenvalues with non-radial eigenvectors (the critical "point"  
then becoming a line, or a linear manifold of  dim = degeneracy of that A). The 
case of  an H with no A-degeneracies is free of these difficulties and will be 
examined here. 

The topological invariants of  the closed and compact  ( n - 1 )  surface in Vn are 
the n Betti numbers, Bi. They may be calculated from the numbers of  independent 
0, 1, 2 , . . .  ( n -  l) simplexes as done in [10]. The {Bi} are independent of  any 
particular triangulation of the surface as they are topological invariants. For the 
(n - 1) sphere 

Bo = 1; {B,, B 2 , . . . ,  Bn-2} = 0; B~_, = 1. (14) 

[For the 2-sphere in e3 for example [10], B0 = 1 ; BI = r - f +  1 ; B2 = 1 where r = no. 
of  independent rings on any connected graph drawn on the sphere; f =  no. of  
faces (2-simplexes) so that if we draw e.g. a circle in the sphere, r = 1 and f = 2 
yielding B1 = 0.] 

A "Morse  number"  Mi is the number of  critical points of  index i, i.e. i = 7/_ = no. 
of  the negative eigenvalues of  the Hessian at that critical point. 

The weak Morse inequalities are 

Mi -> Bi. (15) 
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The strong inequalities are 

Mo >- Bo 

M I  - Mo >-- B l - -  Bo 

M 2 -  MI + Mo > - B 2 -  B1 + Bo 

M , - I -  M,-2 +" " �9 + ( - 1 ) " - l M 0  -> B , - I - B , - 2 + " " "  + ( -  1)"-lB0. 

(16) 

In general the last one becomes an equality. 

We now examine the critical points we have found for E[u] with an H of 
non-degenerate eigenvalues vis-a-vis Eqs. (16). The vectors l u) E V, and variations 
are on the (n - 1)-unit spbere. 

For concreteness let us take Dim V, = 5 so that we have e.g. a 5 • 5 configuration- 
interaction problem, or a five pi-orbital MO problem. 

The last of  Eqs. (16) is an equality: 

M 4 -  M3 + M 2 -  MI +Mo = B 4 -  B3 + B2~ Bj + Bo 

= 1 - 0 + 0 - 0 + 1 = 2 .  (17) 

I f  we assumed from the previous section that for each of  the five a(k> there is 
one critical point, then M3 through Mo in Eq. (17) would cancel out yielding 
M4 = 2, i.e. two maxima,  a seeming contradiction with only one maximum one 
thought there were for the topmost  eigenvalue at ]u(5)). Actually the M 4 = 2  is 
the correct and more complete number of  maxima as given by the Morse theory. 
The seeming contradiction between the local theory ( # max = 1) and the global 
Morse theory (M4 = # max = 2) is resolved in the next two paragraphs.  We note 
that actually as ]u) (or c) wanders on the unit-sphere E[u] becomes a minimum, 
saddle point, or maximum on two points for each h (k) on the surface of the unit 
sphere. Each eigenvector ]u ~k)) direction defines a line through the center of  the 
sphere which pierces the surface of the sphere once at the point c(k)(Y~ (Clk))2 = 1) 
and again at the diametrically opposite point - e  (k). Both points of  the sphere 
satisfy the v = 0  condition [ ( H - h i ) c = 0 ]  of the vector field. Thus for each 
non-degenerate eigenvalue h (k~ of  the Hamiltonian there are two critical points on 
the (n - I )-unit sphere. This demonstrates how the topology of  the compact  variety 
on which the variables wander affects the number  of  critical points of  a function 
of those variables. 

The lower inequalities of Eq. (16) give 

# minima = Mo-> 1 

actually we have M0 = 2. 

# saddle points of  index 1 = Mj 

M~ - Mo -> - 1 
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or for Mo = 2, M1 - 1, actually M~ = 2. 

M 2 - M l  +M0 -> 1 

M2-> ( M l - M o )  + 1 

in which with M~ = Mo = 2, M2 -> 1 actually M2 = 2. 

M 3 -  M2 + MI - M o - - 1  

or with M2= MI = M0=2 ,  M3 -> 1 actually M3 =2.  Finally Eq. (17) which gave 
# of  maxima = M4 = 2. 

The above example shows that the Morse relations are not sufficient to determine 
all of  the numbers of  critical points on the unit sphere. This is not surprising as 
the hypersphere has a very simple topology. Most of  its Betti numbers are zero. 
Had the surface been a torus of  some genus g > 0, more information would feed 
into the inequalities. Nevertheless the topological-variational relations give insight 
into the problem and narrow down the possible numbers of  critical points, even 
determining some of them. They provide a useful check and guide globally while 
the Hessian acts locally. 
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